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Abstract

In this paper, we discuss software based fault tolerant computing techniques used in de-
fense against computer viruses and other integrity corruptions in modern computer systems.
We begin with a summary of research on computer viruses, their potential for harm, and
the extent to which this potential has been realized to date. We then examine major re-
sults on the application of fault tolerant software techniques for virus defense, including; the
problems with conventional coding schemes in detecting intentional corruptions and the use
of high performance cryptographic checksums for reliable detection; an optimal method for
detecting viruses and preventing their further spread in untrusted computing environments;
the use of redundancy and automated decision making for automatic and transparent repair
of corruption and continuity of operation; and the use of fault avoidance techniques for limit-
ing viral spread. Next we discuss the state-of-the-art in virus defense, its use of redundancy
for defense-in-depth, the impact of this on the reliability of the mechanism, the implications
of these results to other computing environments, and architectural issues in implementing
hardware assisted virus defense based on the software fault tolerance techniques already in
widespread use. Finally we summarize results, draw conclusions, and discuss further work.
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1 Background

The “Computer Virus” problem was first described in 1984 [1], when the results of several
experiments and substantial theoretical work showed that viruses could spread, essentially
unhindered, even in the most ‘secure’ computer systems; that they could cause widespread
and essentially unlimited damage with little effort on the part of the virus writer; that
detection of viruses was undecidable; that many of the defenses that could be devised in
relatively short order were ineffective against a serious attacker; and that the best defenses
were limited transitivity of information flow, limited function so that Turing capability [2] is
unavailable, and limited sharing.

In subsequent papers; it was shown that limited sharing, in the most general case, would
cause the information flow in a system to form a partially ordered set of information domains
[3]; it was proven that limiting of transitivity, functionality, and sharing were the only ‘perfect’
defenses [4]; and it was suggested that a complexity based defense against viruses might be
practical [5]. It was also shown [4] that viruses could ‘evolve’ into any result that a Turing
machine could compute, thus introducing a severe problem in detection and correction,
tightening the connection between computer viruses and artificial life, and introducing the
possibility that viruses could be a very powerful tool in parallel computing.

While initial laboratory results showed that viruses could attain all access to all infor-
mation in a typical timesharing computer system with properly operating access controls in
only 30 minutes on average [1] and that network spread would be very rapid and successful
[7], experiments and analytical results were severely limited by the unwillingness of the re-
search community to even allow statistical data to be used in assessing the potential risks.
[1] Although substantial theoretical results indicated how quickly viruses might be expected
to spread given an accurate characterization of an environment [6], and an experiment at
the University of Texas at El Passo showed that in a standard IBM PC network, a virus
could spread to 60 computers in 30 seconds [7], actual spread rates could not be determined
accurately until real-world attacks took place.

Real-world viruses started to appear in large numbers in 1987, when viruses apparently
created in Pakistan, Israel, and Germany all independently spread throughout the world,
causing thousands of computer systems to become unusable for short periods of time, hun-
dreds of thousands of computers to display spurious messages, tens of thousands of users
to experience denial of services, and several international networks to experience denial of
services for short periods [7,8]. By 1988, there were about 20 well known and widely spread
computer viruses, in early 1990, the IBM high integrity research laboratory reported over
125 unique viruses detected in the environment [9], and by March of 1991, between 200 and

1



600 unique real-world viruses were known in the research community [10], and over one new
virus introduced into the global computing environment per day. 1

In the period before viral attacks became widespread, there was little interest from the
broader research community, and research results were considered of relatively little interest
to funding agencies. Even though early results predicted many of the widespread implications
we now see, very few organizations took any measures to defend themselves [11]. In the
following years however, interest sprung up throughout the world research community, and
there are now international computer virus conferences more than once a month, hundreds
of university researchers, and tens of books on the subject. For more complete summaries
of the field, the reader is referred to summary reports [19,20] and books [7,8] on the subject.

Most of the useful techniques for virus defense are based on basic results from fault-
tolerant computing, with special consideration required to deal with defense against inten-
tional attackers rather than random noise. In the remainder of this paper we will look at
how software based fault-tolerant computing techniques have been used to deal with the
computer virus problem.

2 A Multitude of Broken Defenses

Many defensive ideas have been examined for their viability in virus defense. The vast
majority of them have failed to pan out because there are generic attacks against them,
they produce infinite numbers of false positives and false negatives, or they are too costly
to be effectively applied [7]. We now examine several of the well known ideas that are in
widespread use even though we have known for some time about their vulnerabilities.

The most common virus defense is the so-called ‘scanner’, which examines computer
files to detect known viruses. Scanners have several important problems that have a serious
impact on their current and future viability as a defense, most notably: [7,16]

they only detect viruses known to the author
they produce infinite numbers of false negatives
they may produce false positives as new programs enter the environment
they are ineffective against many types of evolutionary viruses
they are not cost effective relative to other available techniques
they become less cost effective as time passes

1Methods for making these counts are not standardized, and many ‘new’ viruses appear to be minor
variations on previous viruses.
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There are a number of variations on scanners, most notably the so-called ‘monitor’ [28],
which is a variation on the ‘integrity shell’ technique described later in this paper [12,13], and
which dramatically reduces the costs associated with detecting known viruses. [7,16]

Another interesting idea was the use of built-in self-test for detecting and possibly cor-
recting viruses in interpreted information [5]. It turns out that all such mechanisms are
vulnerable to a generic attack which is independent of the particular mechanism [7], but the
concept of using complexity to make attack very difficult remains one of the most practical
techniques. The generic attack against self-defense operates as follows:

Infection := 1] Find a program to infect (P )
2] Rename P to P ′

3] Copy the virus (V ) to P

Execution := 4] Rename the current infected program I to V
5] Rename the original I (currently I ′) to I
6] Run (the original) I
7] Wait for I to complete
8] Rename I to I ′

9] Rename V to I

In this example, the virus V ‘disinfects’ I for execution and reinfects I after execution.
Thus, by the time I gets control for execution, I is the clean original copy of I. This method
only requires that the ‘Rename’ operation doesn’t change any file related information, and
thus that the program I cannot determine that it has been renamed to I ′ and back to I prior
to execution. Although this attack works on all current systems, a slightly more generic form
of this attack is achieved by replacing ‘Run’ in line 6 with ‘Simulate’. By performing an
accurate simulation of the legitimate machine environment, we can eliminate all automated
detection methods.

A third common technique is to ‘vaccinate’ a program against viruses by modifying the
program so that the virus is ‘fooled into thinking’ that the program is already infected.
This has several very important drawbacks, primarily that not all viruses have to check for
previous infection, vaccinating against large numbers of viruses may require so many changes
that the resulting program will not operate, and n-tuples of competing viruses may make
vaccination impossible [7]. The later case is easily seen in the following example.

V1 := Find a program P to infect
If P x ≥ 25, Infect
. . .

V2 := Find a program P to infect
If P x < 25, Infect
. . .
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where P x is an abbreviation for the value stored at the xth location in program P , and ‘. . .’
represents the remainder of the virus code.

In this example, we have two viruses V1 and V2, each of which performs infection if and
only if the same value is in a different range. If we try to prevent V1 from infecting P by
setting P x to a value under 25, then V2 will be able to infect P , while setting P x to a value
of 25 or greater will allow V1 to infect P . By vaccinating against V1 we only provide more
‘food’ for V2, and as V2 ‘eats’ more of the available food, it in turn provides more food for
V1. Thus two viruses of this sort can result in a stable population ratio which returns to its
stable state even when disturbed by widespread vaccination against one of the members. It
is simple to create n-tuples of viruses with similar techniques, or even evolutionary viruses
that vary through a potentially infinite number of variations. By varying the relative sizes
of the ‘food space’, we can also control long term average population ratios.

Multiversion programming has also been suggested as a solution to the virus problem
[1], and recent improvements in this technique have made this more and more feasible from
an operational standpoint, [26] but the costs associated with these techniques make them
tolerable only in a very limited number of environments [7], and it is unclear whether they
will be useful in avoiding the effects of computer viruses because they don’t address the ability
to discern between legitimate and illegitimate changes. An n-version virus could presumably
infect (n + 1)/2 copies of the legitimate program, thus causing the voting technique to ‘kick
out’ the legitimate program in favor of the virus [1].

3 Coding Techniques

Although precise virus detection is undecidable [4], we may be willing to suffer an infinite
number of false positives and a very low probability of false negatives in order to have an
effective defense. This can be achieved through the use of coding techniques which reliably
detect changes. For example, a simple checksum or CRC code could be used to detect
changes in files. The problem with many coding techniques is that they are easily forged,
so that an attacker can easily make modifications which leave the code space unchanged
[1]. The reason for this vulnerability is that many coding techniques are designed to detect
corruptions due to random noise with particular characteristics, but they are not designed
to detect malicious changes by intentional agents intent on bypassing them.

In the case of the simple checksum, forgery is trivial as follows:
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• calculate a checksum (S)
• modify the information (F ⇒ F ′)
• ‘subtract’ the new checksum (S ′) from S
• append the result (x) to the modified information (F ′)

mathematically:
V = {v0, ..., vj}, j ∈ N
F = (b1, ..., bn), n ∈ N,∀kbk ∈ V
S =

∑n
i=1 bi | m, m ∈ N

F ′ = (c1, ..., cp), p ∈ N,∀kck ∈ V
S ′ =

∑p
i=1 ci | m

F ′′ = (c1, ..., cp, x), x : (S ′ + x) | m = S

since addition in a modulus is associative, x is simply calculated as x = (S − S ′) | m.

With a checksum which incorporates the size of a file, forgery is still usually straight
forward because the file can be compressed before attack, leaving additional space that
can be filled with null information or information selected to forge a valid checksum. A
compression virus of this sort has been demonstrated as a method of trading time for space
in a computer system, and several current products exploit this technique for automatic
in-memory decompression of executable files at runtime [1].

In the case of a CRC coded checksum, attack is quite similar:
• For an nth degree CRC code, examine n files and their CRC.
• Solve the n variable simultaneous equation.
• Alter a data set.
• Generate a new CRC code for the altered data set.

If you don’t know the order of the equation ahead of time, assume a large number of
variables (as many as you have sample CRC codes and files for), and solve the equation.
If there is enough data, all irrelevant coefficients will be determined as 0. If not, there is
insufficient data for a unique solution. Several techniques have been devised to use multiple
CRC codes with pseudo-randomly generated or user provided coefficients, but these appear
to be simple to attack as well.

Other major problems with CRC codes are that; selected plaintext attack is trivial;
for small files, deriving CRC coefficients is trivial; and for ‘empty’ files, CRC codes may
show the CRC coefficients directly. Some defenders have tried to use multiple CRC codes
with different coefficients, but this provides no computational advantage to the defender,
and further, may actually reduce the complexity of attack because common coefficients are
trivially revealed.

Another possibility is the use of information content measures. In this method, we
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calculate the information content of a data set using Shannon’s method [30]. Unfortunately,
for monograph content, it is trivial to switch two symbols without affecting the total content:

S = {s1, ..., sn}, n ∈ N Symbol set
F = (f1, ..., fm), m ∈ N, ∀i, fi ∈ S old file
H(F ) =

∑m
j=1 h(fj) content of old file

F ′ = (f ′1, ..., f
′
m), m ∈ N, ∀i, f ′i ∈ S new file

∀x, y ≤ m∃M(x) : F (x)↔ F ′(y) one-to-one onto
H(F ′) =

∑m
j=1 h(f ′j) content of new file

where h is Shannon’s monograph information content. [30] Since h is strictly a function of its
argument and the statistical model of content,

∑
is order independent, and M is one-to-one

onto, transformation under M does not effect H, and thus H(F ′) = H(F ).

Bigraph, trigraph, and higher order content can also be considered, but these do not
appear to be significantly more difficult to forge. More generally, compression techniques can
be used to decrease the overall content of a data set by flattening the probability distributions
associated with symbols. [32] Once this has been done, symbols can be added to adjust the
content and size of the data set. Computers also have finite precision, and a forgery needn’t
be exact, but only close enough for the precision being applied. Higher precision requires
more time, and computing information content takes a substantial amount of time even at
nominal precision.

The fundamental problem with all of these techniques is that they are designed to cover
specific classes of changes, whereas an intentional attacker need not make changes in those
classes in order to infect a file.

An alternative method designed to withstand substantial attack by knowledgeable attack-
ers is the cryptographic checksum. The basic principle is to use a secret key and a good but
fast cryptosystem to encrypt a file and then perform a checksum on the encrypted contents.
If the cryptosystem is good enough, the key is kept secret, and the process meets perfor-
mance requirements, the result is a usable hard-to-forge cryptographic checksum [5,14,15]. In
this case, we can store the checksums on-line and unprotected, and still have a high degree
of assurance that an attacker will be unable to make a change to the stored information
and/or the associated cryptographic checksum such that they match under the unknown
key when transformed under the hard-to-forge cryptographic checksum. More specifically,
the properties of a hard-to-forge cryptographic checksum for this application are:

C : {f, k, S : f × k → N} :
4f → 4S
4k → 4S
4S → 4for4k
{f, S} 6→ k
{f, S} 6→ {f ′, S ′}
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where f is a file, k is the cryptosystem key, S is the cryptographic transform which yields a
natural number N , and f ′ and S ′ are a modified file and checksum such that f 6= f ′.

Fairly secure cryptographic checksums have been implemented with performance compa-
rable to CRC codings. [14,15] In addition, the use of cryptographic checksums introduces the
principle of the protection vs. performance tradeoff. In general, we can increase the diffi-
culty of attack by increasing the cryptosystem key size, reducing the content per symbol (e.g.
Huffman compression [32]), or improving our computational advantage through the use of a
different cryptosystem [31]. Each of these normally involves more time for increased difficulty
of attack, although changing cryptosystems may improve both protection and performance.

It is now apparent that we can use cryptographic checksums to reliably detect the changes
associated with a computer virus even in the presence of a knowledgeable attacker, but we
still have the problem of finding a way to efficiently apply the cryptographic checksum
for virus detection, and the problem that we can only detect change with cryptographic
checksums and not the presence or absence of viruses. As we pointed out earlier, the latter
problem is of undecidable in general [1,4], and as we will point out next, the former problem
has been solved.

A special problem for integrity shells in operating systems without basic protection comes
from the so called ‘stealth’ viruses. These classes of viruses alter the operating system calls
used by integrity shells to examine file contents so that they report original file contents even
though the same file when ‘loaded’ through a different system call returns different data. In
order for integrity shells to maintain integrity, they must in turn rely on some other integrity
maintenance mechanism. This is true in general, in that all protection ultimately depends
on some other protection mechanism, eventually leading down to the level of hardware and
then physics.

4 Optimal Detection and Infection Limitation

We mentioned earlier that all built-in self-test techniques are vulnerable to a generic
attack. The basis of this attack is that the virus could activate before the program being
attacked, and forge an operating environment that, to the self defense technique, shows the
altered information to be unaltered [7]. Since the introduction of this concept [27], several so-
called ‘stealth’ viruses have appeared in the environment with the ability to forge unmodified
files when the DOS operating system is used to read files, thus making detection by self-
examination fail.

An alternative to built-in self-test is the use of a system-wide test capability that uses
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cryptographic checksums to detect changes in information. The question remains of how
to apply this technique in an efficient and reliable manner. It turns out that an optimal
technique for applying cryptographic checksums called an ‘integrity shell’ has been found
[12,13].

System : {P, K, S, C : P ×K → S,M, V, k} where:
P = {p1, ..., pn}, n ∈ I (A set of programs)
K = {k1, ..., km}, m ∈ I (A set of keys)
S = {s1, ..., so}, o ∈ I (A set of checksums)
C : P ×K → S (A transform)
M = {m1, m2, m3, m4} (A set of moves)
V = {v1, ..., vn} (A set of values)

∀vi ∈ V, ∃si ∈ S : vi = si, and each user has a secret key k ∈ K.

At a set of times T = {t1, ..., tn}, we generate initial values V = {v1, ..., vn}∀pi ∈ P ,
where ∀vi ∈ V, vi = C(pi, k) at time ti.

We now define: tj : ∀ti ∈ T, tj > ti

We then have an ‘operating system’ which operates as follows:
1 get a program ’pi’ to be interpreted (time=tj)
2 if C(pi, k) = vi, interpret pi; goto 1
3 ask user for a move ’m’ where:

m = m1: goto 1
m = m2: {interpret pi; goto 1}
m = m3: {set vi = C(pi, k); interpret pi; goto 1}
m = m4: {restore pi to where C(pi, k) = vi; interpret pi; goto 1}

This testing method performs tests just before interpretation. It is optimal 2 in that it
detects all primary infection, 3 prevents all secondary infection, 4 performs no unnecessary
checks, and we can do no better in an untrusted computing environment. [12]

Early experiments with integrity shells showed that they detected Trojan horses under
Unix and gained rapid user acceptance in a programming environment [13]. More recently,
cost analysis has also shown that this technique is more cost effective than other techniques
in widespread use, including far less reliable methods such as virus scanners [7,16]. A similar
cryptographic checksum method has been proposed for multi-level trusted systems [17], and
finer grained hardware based detection at load time has also been proposed [18].

2subject to the adequacy of the testing method C
3infection by information that contains a virus but has been trusted nonetheless
4infection by information infected through primary infection
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5 Automated Repair

Automated repair has been implemented with two techniques; for known viruses, it is
sometimes feasible to remove the virus and repair the original data set with a custom repair
routine; while general purpose repair is accomplished through on-line backups.

Although custom repair has some appeal, it is possible to write viruses that make this
an NP-complete problem or worse through the use of evolution [1,4,7]. In several cases,
customized repair has also produced undesired side effects, but this is primarily because
of errors in identification of viruses or because certain side effects caused by viruses are
not reversible from the information remaining in the data set. A simple example of an
irreversible modification is the addition of instructions at a random location in the data
space of a program. We can remove the instructions from the virus if we can find them,
but we cannot necessarily determine what data they replaced. Similarly, a virus that adds
bytes to a program to reach an aligned length and then adds the virus to the end, cannot
be restored to the proper length because the proper length is no longer known.

As a general purpose repair scheme, on-line backups are used in an integrity shell to
replace a data set with an image of the data stored when it was last trusted. This brute force
method succeeds in all but the rarest cases, but has the undesirable side effect of doubling
the space requirements for each covered data set. The space problem can be reduced by 50%
or more in cases where original data sets have sufficient redundancy for compression to be
effective, but the time and space overhead may still be unacceptable in some cases.

We can often implement on-line backups with no space overhead by compressing the
original executable files and the on-line backups so that both require only 1/2 of the space
that the original executable file required. This then slows processing at every program execu-
tion as well as at backup recovery time, and thus implements a slightly different time/space
tradeoff.

On-line backups are also vulnerable to arbitrary modification unless they are protected by
some other protection mechanism. Two such protection mechanisms have been devised; one
cryptographically transforms the name and/or contents of the redundant data set so as to
make systematic corruption difficult; and the other protects the on-line backups with special
system state dependent access controls so that they can only be modified and/or read when
the integrity shell is active in performing updates and/or repairs. Both of these mechanisms
have been quite effective, but both are vulnerable in machines which do not provide separate
states for operating system and user resident programs (i.e. current personal computers).

A LAN based backup mechanism has also been implemented by placing backup files on
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the LAN file server. This mechanism has the pleasant side effect of automating many aspects
of LAN based PC backup and recovery, which has become a substantial problem. In a typical
LAN of only 100 computers, each with a failure rate of one failure per 2 years (i.e. a typical
disk mean-time-to-failure for PC based systems), you would expect about 1 failure per week.
Some LANs have 10,000 or more computers, yielding an expected 100 failures per week. In
these situations, automated LAN based recovery is extremely useful and saves a great deal
of time and money.

Unfortunately, in many personal computers, the system bootstrap process cannot even
be secured, and thus viruses can and have succeeded in bypassing several quite thorough
integrity shell implementations. A recent development taken from fault tolerant computing
[30] uses roll back techniques to ‘SnapShot’ system memory at bootup and perform a complete
replacement of the system state with the known state from a previous bootstrap [25]. With
this system, any memory resident corruptions are automatically removed at bootstrap and
initial system testing can continue unhindered. The SnapShot mechanisms must of course
be protected in order for this to be effective against serious attackers, but this dramatically
reduces the protection problem and makes it far more manageable. In practice, this technique
has been effective against all PC based bootstrap modifying viruses available for testing, and
when combined with subsequent integrity checking and repair with on-line backups, results
in a formidable barrier against attack.

6 Fault Avoidance Techniques

In almost all cases where viruses modify files, they exploit the operating system calls for
file access rather than attempting to perform direct disk access. In systems with operating
system protection, this is necessary in order to make viruses operate, while in unprotected
systems, it is often too complex to implement the necessary portions of all versions of the
operating system inside the virus, and it makes the virus less portable to hinge its operation
on non-standard interface details that may not apply to all device types or configurations.
An effective fault avoidance technique is to use enhanced operating system protection to
prevent viruses from modifying some portion of the system’s data sets.

It turns out that because viruses spread transitively, you have to limit the transitive
closure of information flow in order to have an effective access control based defense [4]. In
the vast majority of existing computer systems, the access control scheme is based on the
subject/object model of protection [21], in which it has been shown undecidable to determine
whether or not a given access will be granted over time. In an information system with
transitive information flow, sharing, and Turing capability, this problem can only be resolved
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through the implementation of a partially ordered set [3,4].

To date, only one such system has been implemented [22], and preliminary operating ex-
perience shows that it is operationally more efficient and easier to manage than previous
protection systems, primarily because it uses coarse grained controls which require far less
time and space than the fine grained controls of previous systems, and because it has auto-
mated management tools to facilitate protection management. It has also proven effective
against the transitive spread of viruses, thus confirming theoretical predictions.

Covert channels [23] still provide a method for attack by users in domains near the INF of
the partially ordered set. Bell-LaPadula based systems [24] are vulnerable to the same sort
of attack by the least trusted user [1,4,7], but with partially ordered sets, there needn’t be a
single INF, and thus even the impact of attacks exploiting covert channels can be effectively
limited by this technique.

A ‘BootLock’ mechanism has also been devised to pre-bootstrap the computer with a low-
level protection mechanism that masks the hardware I/O mechanism of the PC. BootLock
provides low-level remapping of disk areas to prevent bootstrapping mechanisms other than
the BootLock mechanism from gaining logical access to the DOS disk, and thus forces an
attacker to make physical changes to a disk of unknown format or to unravel the disk
remapping process in order to avoid protection. BootLock is also used to prevent disk
access when the operating system is not bootstrapped through BootLock (i.e. from a floppy
disk). Disk-wide encryption provides a lower performance but higher quality alternative to
BootLock protection. Hardware BootLock devices also exist, and are capable of physically
preventing this sort of protection.

A wide variety of other fault avoidance techniques have been implemented, including
testing of all disks entering an area for known viruses using a scanner [7], physical isolation
from external systems [1], in-place modification controls for binary executables [29], special
avoidance techniques in specific system states, and sound change control [7]. Although all of
these techniques provide limited coverage against many current attacks, they have serious
and fundamental cost and effectiveness problems that make them less desirable than more
sound and cost effective techniques [7].

7 Defense-in-depth

As of this writing, the most effective protection against computer viruses is based on
defense-in-depth. In this approach, we combine many approaches so that when one tech-
nique fails, redundant techniques provide added coverage. Combinations of virus monitors,
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integrity shells, access controls, on-line backups, SnapShots, BootLocks, and ad-hoc tech-
niques are applied to provide barriers against operation, infection, evasion, and damage by
known and unknown viruses. To give a clearer picture, we describe one operational sys-
tem for a PC [29]. This system is implemented through a series of techniques installed and
operable at different phases of DOS operation:

Phase Operations
p1 Hardware + ROM bootstrap
p2 Disk bootstrap
p3 Operating system load
p4 Driver loads
p5 Command interpreter load
p6 Instruction processing
p7 Operating system calls

where processing proceeds from phase p1 to p5 and then alternates between p6 and p7. Phase
p1 can only be altered by hardware changes, whereas all other phases of operation are easily
modified by any DOS program under normal DOS operation.

• Phase p1 cannot be altered in software.

• Phase p2 is modified by adding a BootLock to prevent external access and unauthorized
hardware calls that modify the bootstrap procedure.

• Phase p3 varies substantially from version to version of the DOS operating system, and
cannot be reliably modified as far as we can determine. Therefore, no special provisions
are included in this phase.

• Phase p4 is modified to include a ‘login’ process as a device driver, and depending on
which protection mechanisms are activated, optionally performs SnapShot generation
or restoration 5, checks external checking mechanisms against internal stored values,
uses the verified external checking mechanisms to check critical operating system areas
and files used in p2 thru p7 and automatically restores them from on-line backups if
appropriate, performs an initial scan for known viruses, and requests a user ID and
password for access control. Assuming the SnapShot mechanism is active and operates
properly, the machine state is set to the stored p4 machine state, just before checking,
thus eliminating all exposures other than modifications to the SnapShot mechanism
and the stored memory image. Assuming a valid user ID and password are required and
given, relevant operating system calls are rerouted through the protection mechanism
which is loaded into memory and remains resident from this point on.

5A new SnapShot is generated if a previous one did not exist, otherwise, the previous startup state is
restored. Operation then continues from the PC startup image generated on prior bootstrap.
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• By phase p5, all protection mechanisms are in place, and the verified command inter-
preter is loaded. If previous checking phases result in uncorrectable fatal errors, and
assuming the fail-safe values are appropriately set, the system never reaches p5, and
bootstrapping fails. Otherwise, we are now operating in a high integrity state.

• In phase p6, protection is not active, because there is no hardware to support mem-
ory protection or limited instruction sets, and thus no protection is feasible without
simulating the entire operation of the computer, which would dramatically impact
performance. It is then the task of the resident mechanism, if and when activated, to
attempt to counter malicious actions taken in phase p6.

• In phase p7, operating system calls are intercepted by the resident protection mecha-
nisms. Assuming that phase p7 passes through the resident protection mechanism, it
is broken into several subphases:

phase Operations
p7.1 trap bypasses
p7.2 access control
p7.3 execution checks
p7.4 other traps

– In phase p7.1, mechanisms prevent automated attacks from bypassing protection.
There is no way to guarantee that the applications program will not alter the
resident protection mechanism or that it will enter that mechanism for p7 oper-
ations, and there are several common methods for bypassing these mechanisms,
including; bypassing the operating system altogether; tracing operating system
calls as they operate to determine when the real DOS entry point is reached; and
using known addresses of common DOS entry points or obscure or undocumented
DOS entry points.

∗ Bypassing the operating system altogether is typically only used to modify
very standard portions of storage, since each version of DOS may use slightly
different internal structures. Modifying most of these areas is prevented by
BootLock protection installed in p2. These areas are also tested for change
and corrected with on-line backups during phase p4.

∗ Tracing can be stopped in most cases by a clever enough defender, although
very few defenders have succeeded in doing this effectively against the large
number of possible implementations.

∗ Bypassing the resident mechanism with known DOS addresses or undocu-
mented operating system calls can be avoided by modifying DOS operating
system areas so that they fail unless called through the resident protection
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mechanisms. If properly called, DOS areas are temporarily repaired for the
duration of authorized calls and then remodified after the call is processed.

In each of these cases, to be effective against a serious attacker, the mechanisms
must operate in a large class of ways which varies with each use. This ‘evolution-
ary’ approach increases the computational complexity of the attacker attempting
to find standardized defensive patterns and bypass them.

– In phase p7.2, access controls determine the accessibility of information based on
memory resident access control lists loaded in phase p4 based on the user ID.
Inaccessible files produce error returns.

– In phase p7.3, calls that load programs for execution cause the loaded files to
be checked against known viruses and then checked for changes via cryptographic
checksums. If changes are detected, automation provides for recovery and recheck-
ing which, if successful, results in continued operation after correction without
any side effects except the delay caused by recovery from on-line backups. In
this phase, previous access controls are inactivated so that integrity checking and
automated repairs which require additional access are facilitated. Thus operating
system calls performed from this phase are not subject to access controls, except
those in phase p7.4.

– In phase p7.4, trapping mechanisms are used to limit the actions taken by pro-
grams. As an example, if active or called from phase p7.3, executable files cannot
be opened for read/write access. Since phase p7.3 does not require the capabilities
trapped by p7.4, this assures that a virus which has bypassed other protection
mechanisms will have increased difficulty bypassing protection during checking
operations. More generally, we can limit all p7.3 operations not strictly required
for operation, and thus dramatically reduce exposures.

The following table summarizes these descriptions by showing each phase and each pro-
tection mechanism’s status in that phase. In this table, ‘+’ indicates the facility is optionally
active, and ‘-’ indicates the facility is inactive.
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Facility\Phase 1 2 3 4 5 6 7 7.1 7.2 7.3 7.4
BootLock - + + + + - + + + + +
SnapShot - - - + - - - - - - -
Scanner - - - + - - - - - - -
System Test - - - + - - - - - - -
Passwords - - - + - - - - - - -
Access Controls - - - - + - + + + - -
Special Controls - - - - - - - - - + +
Self-defense - - - + - - + + - - -
Virus Monitor - - - - + - + - - - -
Integrity Shell - - - - + - + - - - -
Virus Traps - - - - + - + + + + +

8 Experimental and Real-World Experience

In the laboratory and in operational experience, numerous experimental and real-world
viruses have been tested against the above described defense mechanism. Although most
experiments indicate very little because their results are easily predicted, occasionally we
find a surprising result and have to improve our models of what has to be covered and how
to effectively cover it. The good news is that the technique of defense-in-depth tends to
provide ample redundancy to withstand new and unanticipated attack mechanisms. This
is a vital point because with such a mechanism, we are now in a proactive posture, where
defenders are not ‘chasing’ attackers, but rather attackers are ‘chasing’ defenders.

For example, the virus monitor is only effective against known viruses, and is thus quite
weak. To avoid it, we only have to write a new virus or modify an existing virus in a non-
trivial manner. This is done at a high rate, 6 so there is little realistic hope or desire for such
constant updating. Since the time required for monitor operation increases with the number
of different viruses tested for, we decrease performance as we increase the known attack list.
Based on experience, we select the most likely viruses and encode enough to cover over 90%
of current attacks. 7

The integrity shell detects all viruses which modify files unless they also modify the
operating system mechanisms which the integrity shell uses to examine the files (A.K.A. a
‘stealth virus’) or circumvent the cryptographic mechanism. This covers over 99% of current

61 or more new viruses per day as discussed above
760 out of 600 known viruses currently represent over 90% of the attacks, so we get 90% coverage by

testing for only 10% of known viruses.
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known viruses, and in less vulnerable operating systems might be adequate on its own.

Access control has the effect of limiting the scope of the attack by preventing modification
of non-writable files by the attack. To avoid this mechanism, it is necessary to either bypass
its operation in memory or avoid the use of operating system calls entirely and perform
purely physical disk access. This becomes quite complex as the number of different versions
of the DOS operating system are quite high and hardware platforms vary considerably.

In practice, only a few of the known viruses have bypassed the access control mechanism
(less than 1% of known viruses), and they do so by tracing operating system calls to lo-
cate internal addresses which they then directly access. Another similar technique exploits
undocumented system calls or implementation errors to bypass protection. In the case of
implementation errors, repairs are made as errors are found, and testing programs help lo-
cate these errors. Unfortunately, a complete test is infeasible for such a complex system, so
instead of getting a verified implementation these systems get stronger with time. In the case
of undocumented system calls, we cannot anticipate the number or extent of the problem,
and cannot get adequate documentation from the manufacturers in order to provide proper
protection.

The series of virus traps which prevent damage by a variety of means are over 99% effec-
tive, but a skilled attacker can easily bypass these techniques. The trace trap for example
can be easily bypassed by manual inspection and in-place modification of the machine mem-
ory resident routines, since it is only a few instructions long. The problem of writing a
program for the same task is somewhat more complex. Recently, we have started to exploit
evolutionary techniques for making automated bypass of these mechanisms more difficult,
and we currently believe that this can be made NP-complete fairly easily.

The remapping of disk areas at bootup prevents all currently known automated physical
attacks and the vast majority of manual attacks other than those performed by a skilled and
well tooled operator with physical access to the hardware. By convention, we never rate any
defense better than 99% effective, so we give that ranking to this one.

Finally, the SnapShot mechanism has never been circumvented, and as far as we can tell,
can only be bypassed by intentional attack against the specific defensive mechanism. Thus
it receives our 99% rating as well.

A simple 8 calculation, assuming independence of mechanisms, is that the likelihood of
successful attack is less than 1 in (90x99x99x99x99x99), or less than 1.2x10−12! Unfortu-
nately, protection just doesn’t work that way, because we don’t have random attackers. Most
serious attackers will divide and conquer, bypassing each mechanism in turn. This requires
a serious attacker to spend a substantial amount of time and effort. Thus, even though our

8but misguided
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probabilistic assumption is foolish, we have succeeded in ‘raising the bar’ high enough to
fend off the vast majority of non-expert virus writers.

Another important issue to be understood in the case of viruses, is that selective survival
assures us that as soon as one attacker succeeds in bypassing a defense mechanism, the
successful virus will spread and become available to far more attackers, who in turn may find
other ways of exploiting similar weaknesses. Experience shows that attackers are intentional
and malicious, and spend inordinate amounts of time finding ways to bypass protection
mechanisms. Since no such defense is or can be perfect for the PC, we will perhaps always
struggle with the problem of viruses, as long as we operate in this completely untrusted mode.
The current mix of viruses in the global environment is primarily a reflection of the defenses,
not of the written viruses. By using defense-in-depth in an environment where most other
defenses have fewer levels of protection, you dramatically increase your chances of succeeding
in defense. This is not true in an environment where defense-in-depth is commonplace, since
the successful attacks will be those which bypass numerous defense mechanisms.

There are some other advantages and disadvantages of these mechanisms and we would
be remiss if we did not point them out. In particular, general purpose mechanisms which are
successful against intentional attackers tend to be quite successful against random events.
On the other hand, as we provide defense-in-depth, performance suffers, and we may have
to consider the extent to which we are willing to reduce performance in trade for coverage.

The integrity shell, automated recovery mechanism, access control mechanisms, SnapShot
mechanism, and BootLock mechanism are all amenable to general purpose use in other
protection applications, have a sound basis in theory for their effectiveness, and are attractive
in other ways. Virus specific traps, monitors, trace prevention mechanisms, and other PC
specific defenses are less portable and less applicable in other environments.

Performance can be greatly enhanced through hardware based implementations. To
get an idea of the performance implications, the implementation we have been discussing
typically operates in less than 3K of resident memory, and except for virus monitor and
integrity shell operations requires only a few hundred extra instructions per affected operating
system call. In practice, this has negligible performance impact. The monitor and integrity
shell functions however take considerably more time because the operations they perform
are considerably more complex. A typical virus monitor can check for 60 known viruses on
a slow PC in under 1/2 second. If we expand to 600 viruses, this time exceeds one second,
and as we start to examine harder to identify viruses, the time can go up by several orders of
magnitude, depending on what we are looking for. A typical cryptographic checksum on a
20Mhz PC-AT (16 bit bus) with a 20msec hard-disk operates at 100Kbytes per second. The
average DOS program in only about 17Kbytes long [13], so integrity shell operation slows
typical program startup by under 0.2 sec.
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On-line backup restoration normally requires twice the time of program checking because
for every read performed in checking, restoration performs a read and a write. With com-
pression, this problem can be reduced, but only in trade for more computation time in the
restoration process. We have never encountered a circumstance where it is preferable to not
restore from on-line backups due to the time overhead, and considering that the time for
restoration without on-line backups is at least several orders of magnitude longer, only space
usage appears to be an impediment to the use of on-line backups.

The strength of this integrated set of redundant protection mechanisms is far stronger
than a non-integrated subset because synergistic effects result in increased protection. As
an example of synergy, with independent access controls and integrity checking, integrity
checking information must be accessible to the attacker in order to be checked, and thus
cannot be adequately protected by the access controls. Similarly, on-line backups cannot
be protected from modification unless access control is integrated with automated repair.
Memory limits of DOS cause the size of resident memory usage to be a critical factor in
protection as well. By combining mechanisms we dramatically reduce resident memory
requirements, which is another synergistic effect. There are many other synergistic effects
too numerous to list here.

Ultimately, a sufficiently motivated, skilled, and tooled attacker with physical access to
a system will bypass any protection mechanism, but in the case of computer viruses, highly
complex mechanisms are more likely to require large amounts of space and time and be
noticed because of their overall system impact. If we can drive the complexity of automated
attack high enough without seriously impacting typical system performance, we will have
achieved our primary goal. Defense-in-depth appears to succeed in forcing attackers to launch
defense-specific attacks in order to succeed in undetected attack, and in this regard, drives
the complexity of attack up significantly.

9 Architectural Implications

As we have seen, successful software based virus protection in untrusted computing en-
vironments depends heavily on software based fault-tolerant computing. Not only do we
require defense-in-depth in order to be effective, but we often have to use redundancy within
each method to assure reliability of mechanisms against attackers. Although these software
techniques are quite effective at this time, ultimately a hardware supported solution is far
preferable.

In the field of computer architecture, information protection has historically been fun-
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damental. Many major advances in information protection have led directly to new archi-
tectural structures in computers, and at this point in time, about 25% of the hardware in
most modern CPUs is in place for the purpose of protection. At the hardware level, fault
tolerant computing has gained legitimacy as a field which studies integrity of hardware struc-
tures, but at the systems level, it has failed to protect against software based attacks. Thus
information protection at the hardware level has a firm grip in most computer engineering
programs, but exists under a name that hides its relationship to other information protection
subfields like ‘computer security’ and ‘cryptography’. Computer viruses have demonstrated
the extreme lack of integrity in modern systems and networks, and have demonstrated the
short sightedness of our research community in ignoring integrity, a major protection issue.

A large portion of the applications for ‘super-computers’ are in the code breaking area.
Encryption hardware is a substantial portion of the military budget, and nearly every modern
mainframe computer system has either hardware or software encryption capabilities. Every
automatic teller machine uses encryption hardware and software, as do most point of sale
terminals, and many credit card checking machines. A major complaint against the personal
computer has been its lack of protection hardware, which causes crashes and numerous other
problems. The major differences between the first generation of personal computers and
those coming out now are the addition of protection hardware and improved performance.

Introducing standard hardware-based operating system protection provides dramatic im-
provements in access control and separation of operating system functions from application
program attacks, but this alone does not resolve the virus problem. For example, the first
virus experiments were performed on a Unix based system with hardware based operating
system protection. They did not exploit any operating system properties other than the
sharing and general purpose function, [1] and they demonstrated the ability to attain all
rights in under 30 minutes on the average.

For integrity shells and virus monitors, we can save considerable amounts of time by
incorporating the checking mechanism in the operating system, since checking a program and
then loading it duplicates I/O operations. Hardware based implementation yields several
orders of magnitude in performance which can be used to improve performance and/or
difficulty of attack. The most advantageous hardware location for generating and testing
these codes is in the disk controller, where other checks such as parity and CRC codes
are done. The disk controller could easily return these codes to the operating system as a
result of DMA transfers, and the operating system could then combine the sequence of codes
generated for a file to yield a cryptographic checksum.

Another alternative for highly trusted operating systems is maintaining only the modifi-
cation date and time of files and a list of the last authorized modification date and time [12].
The operation is essentially the same as an integrity shell, except that we must have an oper-
ating system that maintains file dates and times as reliably as cryptography covers changes.
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In systems without physical access and very good operating system controls, this is feasible,
but no current system meets this standard. For example, current systems allow the clock to
be changed, which completely invalidates this mechanism. Updating file modification dates
would also invalidate this mechanism. Another advantage of the cryptographic checksum is
that it operates properly between machines and across networks. Since the cryptographic
checksum is a mathematical function of the key and file, no hardware dependencies need be
involved.

We must also be careful to assure that the mechanism of updating checksums does not
become too automated. If it simply becomes a check for disk errors, it will not fulfill its
purpose of controlling the propriety of change. After all, the legitimacy of change is a
function of intent [12], and if we automate to the point where people do not specify their
intent, we return to the situation where a virus can make a seemingly legitimate change.

Other mechanisms that may be retained for increased integrity even when operating sys-
tem protection is facilitated by hardware are the BootLock and SnapShot mechanisms. These
mechanisms are vital in assuring that the bootstrapping process has not been corrupted.

10 Summary, Conclusions, and Further Work

We have described a substantial set of failures in existing defenses and redundant integrity
protection mechanisms used in defending against computer viruses in untrusted computing
environments. They include applications of coding theory, cryptography, operating system
modifications, redundancy for detection and repair, fault avoidance, synergistic effects, and
defense-in-depth.

These protection measures comprise one of the most comprehensive applications of
software-based fault-tolerance currently available, and their widespread use represents a
major breakthrough in the application of software-based fault-tolerance. They have proven
effective against a wide range of corruption mechanisms, including intentional attacks by
malicious and intelligent agents. Some of these techniques are used for virus defense in over
100,000 systems, there are something like 10,000 systems currently exploiting all of these
techniques in combination, and in the next few years, the total number of systems protected
by these mechanisms are expected to exceed 1,000,000.

The protection measures discussed herein are effective to a large degree against computer
viruses, but the implications of this work on high integrity computing are far broader than
just defense against viruses or even ‘computer security’. The integrity shell, for example,
detects large classes of corruptions, including single and multiple bit errors in storage, many
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sorts of human and programmed errors, accidental deletion and modification, transmission
errors in networking environments, and read/write errors in unreliable media such as floppy
disks. SnapShot techniques have widespread applications for high integrity bootstrapping,
and similar techniques are already used in limited ways for error recovery in other areas.

Improvements based on hardware implementation will provide dramatic performance and
reliability enhancement, as will the application of these techniques in systems which already
exploit hardware based operating system protection.

In every case we are aware of, attack is feasible given an attacker with phys-
ical access to the system, adequate tools for system debugging, and adequate
knowledge and persistence. There is no perfect defense.

A number of related research areas are already being pursued. The highest priorities at
this time are being given to enhanced performance, improvements in evolutionary codes to
make automated bypassing of protection mechanisms very complex, other exploitations of
computational advantage in driving the complexity of attack up without seriously impacting
the performance of the defenses, improved techniques for exploiting hardware based protec-
tion, and the application of these techniques to other operating systems and architectures.
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